Do Larger Health Insurance Subsidies Benefit Patients or Producers? Evidence from Medicare Advantage

Marika Cabral, UT Austin and NBER Michael Geruso, UT Austin and NBER Neale Mahoney, Chicago Booth and NBER

September 14, 2017

Motivation

- Medicare is the primary source of health insurance for the elderly
 - In 2012, Medicare spending was \$572.5 billion and growing at 4.8%
 - Given the large scale and rapid growth, reforming Medicare is a perpetual policy issue
- One commonly discussed proposal is adjusting subsidies to private Medicare Advantage plans
 - Proponents of larger subsidies argue that increased payments will result in lower premiums / generous benefits
 - Opponents argue that such a move would lead to large profits for insurance companies and health care providers
- At its core, these debates are about economic incidence: Does increasing government subsidies to private Medicare Advantage plans benefit patients or producers?

Background on Medicare

Medicare beneficiaries have two options for hospital + physician coverage:

- Traditional Fee-for-Service Medicare (TM)
 - Public coverage
 - Virtually no provider restrictions
 - Significant patient cost-sharing
- Medicare Advantage (MA)
 - Private coverage
 - Restricted network of providers
 - Little or no patient cost-sharing
 - Often offer supplemental benefits (e.g., vision, dental, drug coverage)

Background on Medicare Advantage

- Medicare eligibles can choose any plan offered in their county
- Plans are given capitation payment from Medicare for each enrolled beneficiary
- Plans can charge a supplemental premium to beneficiaries

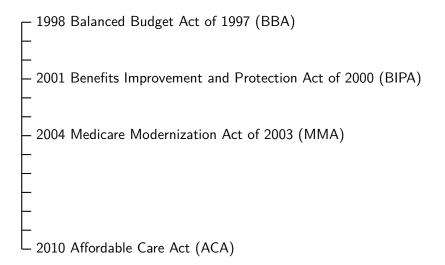
Plan payments = capitation payments + premiums

This Paper

- In this paper, we investigate the following questions:
 - 1. To what degree are increased capitation payments passed through to consumers?
 - 2. What market factors determine this pass-through rate?

Approach and Findings

- Leverage sharp, differential changes in county-level payments to MA insurers induced by the Benefits Improvement and Protection Act (BIPA) of 2000
- Use this difference-in-differences variation to estimate pass-through
 - For \$1 increase in subsidy, premiums decrease by 45 cents and plan generosity increases by 8 cents
- Write down a simple model to illustrate factors that determine pass-through: selection and market power
- Present empirical evidence on the importance of each of these factors in explaining incomplete pass-through


Related Literature

- Pass-through in MA
 - Duggan, Starc, and Vabson (2015)
 - Song, Landrum, and Chernew (2013)
- Selection into MA
 - "Switcher" studies (e.g., Brown et al. 2014; Newhouse et al. 2012)
 - We use exogenous variation in prices (e.g. Einav, Finkelstein, Cullen 2010)
- Market power in health insurance
 - Curto et al. (2015) on market power in MA
 - Dafny (2010) and Dafny et al. (2012) on market power in ESI

Outline

- Background
- Research design
- Pass-through
- Model
- Selection and market power

An Abridged History of Payment Reforms

MA Payments

Capitation payments intended to reflect counterfactual TM costs

Capitation payment_{ijt} =
$$b_{jt} \times r_{it}$$

- b_{jt} is county-level "base payment"
 - Pre BIPA, largely determined by historical average TM costs
 - Base payments increased by approx 2% per year
- r_{it} is demographic risk adjustment
 - Normalized to have mean 1 in entire population
 - Comprehensive risk adjustment introduced in 2004

Data

- Multiple sources:
 - MA Rate-books: Payments for county \times year
 - Plan Service Files: Benefits and premiums by plan imes year
 - CMS Beneficiary Summary File: admin cost data for TM
 - CMS Denominator File: admin demographic data for all Medicare
- Time frame: 1997-2003
 - Premium data for 1997-2003
 - Benefits data for 2000-2003
 - Plan quality data for 1999-2003
 - Costs data for 1999-2003

Sample Construction

- ullet Aggregate data to county imes year panel
 - Weight plan-level attributes by enrollment shares
 - Weight county \times years by number of beneficiaries in each county
- Only observe plan attributes when 1+ plan in county
 - Baseline: County imes years with 1+ plan
 - Show that variation does not affect entry / exit into sample

Summary Statistics

Table: All Counties, 1997-2003

	Mean	Std. Dev.	Min.	Max.
Base Payment (\$ per month)	490.58	83.96	222.99	777.91
At Least One Plan	65.1%	47.7%	0%	100%
Number of Plans	1.78	1.73	0	7
MA Enrollment	19.1%	18.4%	0%	69.8%
TM Costs (\$ per month)	486.53	103.94	136.87	940.08

Summary Statistics

Table: County × Years with At Least One Plan, 1997-2003

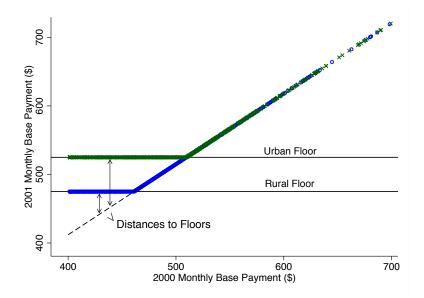
	Mean	Std. Dev.	Min.	Max.
County-Level Premium (\$ per month	1)			
Mean	22.71	27.82	0	156.29
Min	15.05	26.25	0	156.29
Median	21.60	29.60	0	156.29
Max	33.56	33.54	0	194.47
County-Level Benefits*				
Physician Copay (\$ per visit)	7.89	4.95	0	56.15
Specialist Copay (\$ per visit)	14.39	6.79	0	95.72
Drug Coverage	70.5%	41.1%	0%	100%
Dental Coverage	27.4%	35.7%	0%	100%
Vision Coverage	69.9%	39.8%	0%	100%
Hearing Aid Coverage	40.0%	42.1%	0%	100%
lumber of Plans	2.75	1.41	1	7
IHI	5,696	2,584	1,778	10,000
AA Enrollment	28.8%	16.1%	1.1%	67.6%
M Costs (\$ per month)	521.80	106.65	254.96	940.08

^{*}Benefits data are only available for 2000-2003

Outline

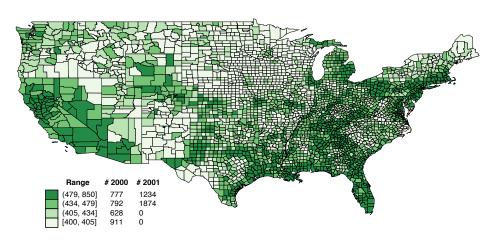
- Background
- Research design
- Pass-through
- Model
- Selection and market power

MA Payments and BIPA


- Benefits Improvement and Protection Act of 2000
 - Implemented rural and urban payment floors*
- Base payments

$$b_{jt} = \left\{ \begin{array}{cc} \widetilde{c}_{jt} & \text{if } t < 2001 \\ \max \left\{ \widetilde{c}_{jt}, \ \underline{b}_{u(j)t} \right\} & \text{if } t \geq 2001, \end{array} \right.$$

- $oldsymbol{\widetilde{c}_{jt}}$ is the base payment absent the BIPA floors
- $\underline{b}_{u(j)t}$ is the relevant urban or rural payment floor


*Required plans to submit new premiums and benefits to take effect in February 2001. We define 2001 premiums using these post-update value

BIPA Payment Floors

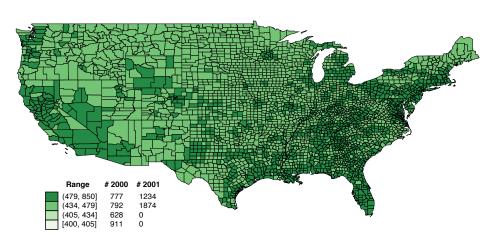

Effect of BIPA on Payments

Figure: Pre-BIPA Payments, 2000

Effect of BIPA on Payments

Figure: Post-BIPA Payments, 2001

Payment Floors

			Percentiles		
	Mean	Std. Dev.	25th	50th	75th
Non-Floor County (N = 886)					
Δ Base Payment	14.39	1.58	13.17	14.03	15.10
% Change in Base Payment	3.0%	0.0%	3.0%	3.0%	3.0%
Rural Floor County (N = 1,831)					
Δ Base Payment	52.94	17.16	39.67	62.59	67.18
% Change in Base Payment	14.1%	4.9%	10.0%	16.8%	18.3%
Urban Floor County (N = 426)					
Δ Base Payment	64.67	29.56	38.90	62.33	89.05
% Change in Base Payment	16.1%	8.4%	8.8%	14.9%	22.7%

Econometric Model

• Measure exposure to BIPA with a distance-to-floor measure

$$\Delta b_{jt} = \max \left\{ \underline{\widetilde{b}}_{u(j)t} - \widetilde{c}_{jt} \;, \quad 0 \right\}$$

- $\underline{\widetilde{b}}_{u(j)t}$ is relevant urban/rural floor in year t
- ullet \widetilde{c}_{jt} is payment rate in absence of the floor in county j in year t

▶ More Details

Econometric Model

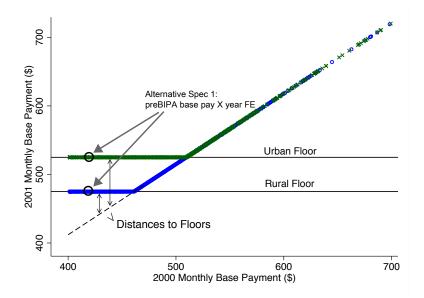
Difference-in-differences with year-specific coefficients

$$y_{jt} = \alpha_j + \alpha_t + \left(\sum_{t \neq 2000} \beta_t \times I_t \times \Delta b_{jt}\right) + f(X_{jt}) + \epsilon_{jt}$$

- α_i and α_t are county and year fixed effects
- $f(X_{jt})$ is a flexible set of controls
- Normalize $\beta_{2000} = 0$ in year when BIPA was passed
- Cluster standard errors at the county level

Identification

Assumption: In the absence of BIPA, outcomes for counties that were differentially affected by the payment floors would have evolved in parallel

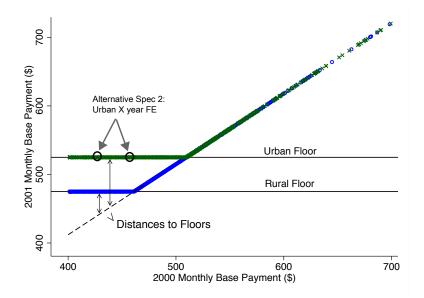

- Two broad approaches to assessing the validity of this assumption:
 - Plot β_t 's over time to visually inspect for spurious pre-existing trends
 - Show results robust to alternative specifications that isolate two complementary sources of identifying variation
 - 1. Include pre-BIPA Base Payment X Year FE
 - 2. Include Urban X Year FE

Identification

Assumption: In the absence of BIPA, outcomes for counties that were differentially affected by the payment floors would have evolved in parallel

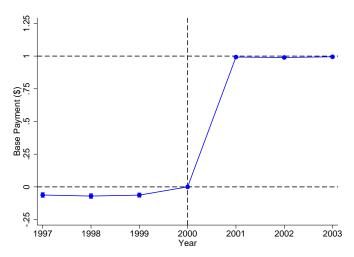
- Two broad approaches to assessing the validity of this assumption:
 - Plot β_t 's over time to visually inspect for spurious pre-existing trends
 - Show results robust to alternative specifications that isolate two complementary sources of identifying variation
 - 1. Include pre-BIPA Base Payment X Year FE
 - 2. Include Urban X Year FE

BIPA Payment Floors



Identification

Assumption: In the absence of BIPA, outcomes for counties that were differentially affected by the payment floors would have evolved in parallel


- Two broad approaches to assessing the validity of this assumption:
 - Plot β_t 's over time to visually inspect for spurious pre-existing trends
 - Show results robust to alternative specifications that isolate two complementary sources of identifying variation
 - 1. Include pre-BIPA Base Payment X Year FE
 - 2. Include Urban X Year FE

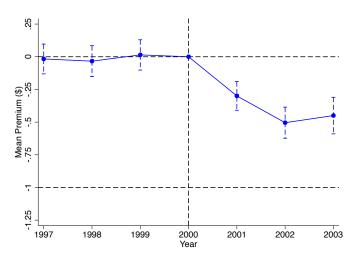
BIPA Payment Floors

First Stage Impact on Base Payment

Figure: Impact of \$1 Increase in Distance to Floor

First Stage, Alternative Specifications

Figure: Impact of \$1 Increase in Distance to Floor


	Dependent Variable: Base Payment (\$)			
	(1)	(2)	(3)	
Δb X 2001	0.993	0.996	0.993	
	(0.003)	(0.004)	(0.003)	
Δb X 2002	0.990	0.997	0.987	
	(0.004)	(0.005)	(0.004)	
Δb X 2003	0.995	1.002	0.992	
	(0.004)	(0.005)	(0.004)	
Main Effects				
County FE	X	X	X	
Year FE	X	X	Х	
Additional Controls				
Pre-BIPA Payment X Year FE		X		
Urban X Year FE			Х	
Pre-BIPA Mean of Dep. Var.	515.15	515.15	515.15	
R-Squared	1.000	1.000	1.000	

Outline

- Background and data
- Research design
- Pass-through
- Model
- Selection and market power

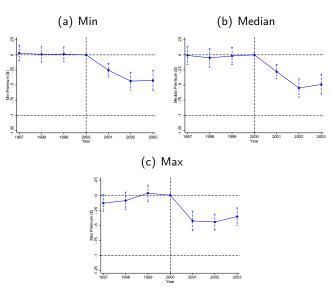

Mean Premiums

Figure: Impact of \$1 Increase in Monthly Payments

Distribution of Premiums

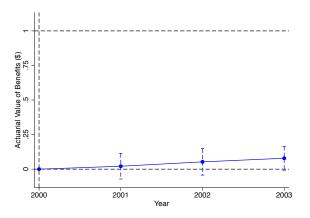
Figure: Impact of \$1 Increase in Monthly Payments

Premiums Robustness

For every \$1 increase in subsidy, mean premiums decline by 45 cents

Obtain similar estimates when...

- 1. Investigate effect on distribution of premiums
- 2. Estimate alternative specifications that isolate subsets of identifying variation Subsets of variation
- 3. Estimate Tobit specifications that take into account that plans could not give rebates during our time period Tobit regressions
- 4. Aggregate up to a higher level Aggregated regressions
- 5. Examine detailed timing using monthly data Monthly regressions


Benefits

Insurers could have alternatively passed-through subsidies via benefits

- We evaluate the impact on benefits using multiple approaches:
 - 1. Impact of \$50 increase ($\sim 10\%$) in payments on copays, dental, etc.
 - Impact on actuarial value using data on utilization / insurance payments from MEPS

Monetized Benefits

Figure: Impact of \$1 Increase in Monthly Payments

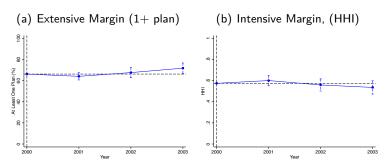
• By 2003, max pass-through in benefits of 8 cents on the dollar

▶ Benefit Results Table

Unobserved Quality

Limited concern in this setting for two reasons

- 1. Rich product characteristics data
 - We see everything consumers see at the point of sale
 - Many other characteristics significantly constrained by regulation (e.g., essential benefits, network adequacy)
- 2. Additional analysis of quality data Quality Analysis
 - Precisely estimated zero on beneficiary's subjective evaluations of plan quality (CAHPS)
 - Precisely estimated zero on clinical quality measures (HEDIS)


Plan Availability

Examine two margins

- Extensive: Percent of counties with at least one plan
- Intensive: HHI conditional on having at least one plan

Plan Availability: Extensive and Intensive Margins

Figure: Impact of \$50 Increase in Monthly Payments

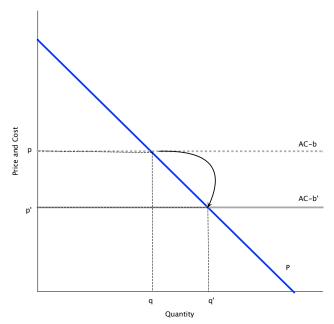
▶ Plan Availability Table

Pass-through Estimates: Key Takeaways

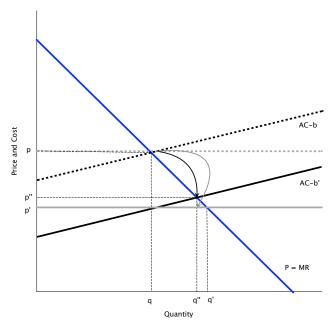
For every \$1 marginal increase in subsidy:

- 45 cents passed-through in lower premiums
- 8 cents passed-through in more generous benefits
- No detectable effect on entry
- ⇒ About one-half (53 cents) of increase flows to consumers, with 95% confidence interval (35 cents, 71 cents)

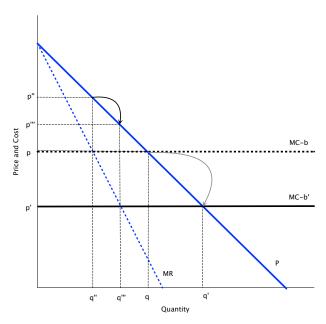
Outline


- Background and data
- Research design
- Pass-through
- Model
- Selection and market power

Approach


⇒ Potential Mechanisms: Advantageous Selection and Market Power

- Graphical intuition
- Model that relates pass-through to these factors


No Selection, Perfect Competition

Advantageous Selection, Perfect Competition

No Selection, Monopoly

Model Setup

Build more general model that expresses pass-through as a function market power and selection

- Aggregate demand: $Q(p) \in [0,1]$
- Aggregate costs for industry: $C(Q) \equiv \int_{v_i \geq p^{-1}(Q)} c_i$
 - Average costs: $AC(Q) \equiv \frac{C(Q)}{Q}$
 - Marginal costs: $MC(Q) \equiv C'(Q)$
- Selection
 - Adverse selection: MC'(Q) < 0
 - Advantageous selection: MC'(Q) > 0

Equilibrium

Perfect competition characterized by zero profits

$$p = AC(Q) - b$$

Monopolist's first order condition

$$p = \mu(p) + MC(Q) - b$$

-
$$\mu(p) \equiv -rac{Q(p)}{Q'(p)}$$
 is absolute markup term

Market Power

Following Weyl-Fabinger (2013), introduce conduct parameter $\theta \in [0,1]$

$$p = \theta \Big(\mu(p) + MC(Q) - b \Big) + (1 - \theta) \Big(AC(Q) - b \Big)$$

- Nests extremes
 - Perfect competition: $\theta=0$. Monopoly: $\theta=1$
- Reduced form of standard models
 - Cournot: $\theta = 1/n$
 - Diff product Bertrand: heta=1- aggregate diversion ratio
 - Requires "symmetry assumptions" on selection (see Mahoney and Weyl, 2014)

Pass-Through

- Define pass-through as $ho \equiv -rac{dp}{db}$
- Fully differentiating FOC yields

$$ho = rac{1}{1 - (1 - heta) \left(rac{dAC}{dp}
ight) - heta \left(rac{d\mu}{dp} + rac{dMC}{dp}
ight)}$$

Assuming linear demand and costs

$$\rho = \underbrace{\left(\frac{1}{1 - \frac{dAC}{dp}}\right)}_{\text{Selection}} \underbrace{\left(\frac{1}{1 + \theta}\right)}_{\text{Market power}}$$

Outline

- Background and data
- Research design
- Pass-through
- Model
- Selection and market power

Impact of Selection

Want to estimate

$$\tilde{\rho} = \frac{1}{1 - \frac{dAC}{dp}}$$

- Two interpretations
 - 1. Reduction in pass-through due to selection in perfect comp baseline
 - 2. Proportional reduction in pass-through in linear model with any level of competition

Impact of Selection

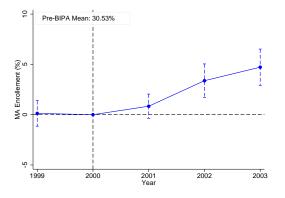
Introducing risk rating

$$\tilde{\rho} = \frac{AR}{1 - \left(\frac{dAC}{dp} - b\frac{dAR}{dp}\right)}$$

- $\frac{dAC}{dp} b\frac{dAR}{dp}$ measures selection net of risk adjustment payments
- Scaled by AR to convert base payment into capitation payment

Estimation Approach

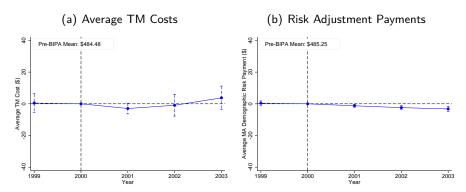
- Main challenge: Have admin data on TM costs, not MA plan costs
 - Prior literature looks at switchers: Do beneficiaries who switch from FFS to MA have lower t-1 costs than beneficiaries who stay?
 - Evidence is mixed (e.g., Brown et al. 2014; Newhouse et al. 2012)
 - Magnitudes are not economically interpretable
 - Does not identify selection with respect to premiums


Estimation Approach

- Our approach builds on / formalizes switcher idea with two assumptions:
 - **A1.** Costs under MA and TM are proportional $c_i^{MA}/c_i^{TM} = \phi$ with $\phi \leq 1$
 - $\phi \leq 1$ consistent with Bundorf Levin Mahoney (2012), other evidence on managed care vs. fee for service cost structures
 - **A2.** Cost curves are linear so that selection is parameterized by single slope parameter
- Under these assumptions
 - TM slope provides upper bound on MA slope and therefore explanatory power of selection

▶ More Details

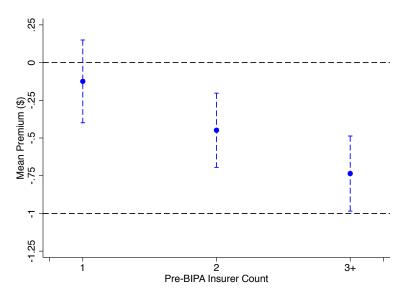
MA Enrollment


Figure: Impact of \$50 Increase in Monthly Payment

 \bullet \$23 decrease in premiums raises MA by 4.7 pp on base of 30.5%

Average Costs

Figure: Impact of \$50 Increase in Monthly Payment


- Slope of $\frac{dAC^{MA}}{dQ} b\frac{dAR^{MA}}{dQ}$ is \$149 with 95% CI of (-\$9, \$307)
- No effect on utilization ► Evidence on Utilization

Impact of Market Power

- Estimates above imply that $\tilde{
 ho}=85$ cents Table of Estimates
- Theory: Residual \approx 35 ppt due to market power
- Can we find supporting empirical evidence?
- Idea: Heterogeneity in pass-through estimates by pre-BIPA measures of market power
 - Number of pre-BIPA insurance plans
 - Pre-BIPA Insurer HHI

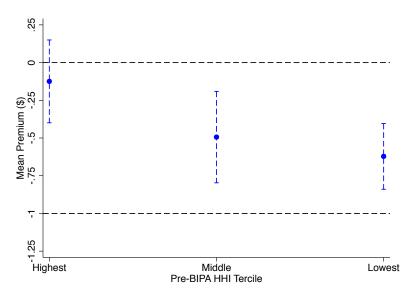

Heterogeneity by pre-BIPA Number of Insurers

Figure: Pass-through

Heterogeneity by pre-BIPA Insurer HHI

Figure: Pass-through

Conclusion

- Used sharp, differential increase in MA payments to study allocation of (marginal) surplus in privatized Medicare
 - One-half of increase passed-through to consumers
 - \Rightarrow Implications for \$156B in MA payment reductions scheduled under ACA

- Investigate explanations of incomplete pass-through
 - Advantageous selection has limited explanatory power
 - Evidence suggests market power more likely explanatory factor
 - ⇒ Implication is that efforts to make markets more competitive may be key to increasing consumer surplus on the margin

• Measure exposure to BIPA with distance-to-floor variable:

$$\Delta b_{jt} = \max \left\{ \underline{\widetilde{b}}_{u(j)t} - \widetilde{c}_{jt} , \quad 0 \right\},$$

• Use data on base rates in the pre-period to construct \widetilde{c}_{jt} , the monthly payment in the absence of the floor

$$\widetilde{c}_{jt} = \left\{ egin{array}{ll} c_{jt} & ext{if } t \leq 2001 \\ c_{j,2001} \cdot 1.02^{(t-2001)} & ext{if } t > 2001 \end{array}
ight.$$

• Use data on floors in the post-period to construct $\underline{\tilde{b}}_{jt}$, the counterfactual urban or rural payment floors:

$$\widetilde{\underline{b}}_{u(j)t} = \begin{cases}
\underline{b}_{u(j),2001} \cdot 1.02^{(t-2001)} & \text{if } t < 2001 \\
\underline{b}_{u(j)t} & \text{if } t \ge 2001
\end{cases}$$

Premiums, Alternative Specifications

Table: Impact of \$1 Increase in Monthly Payments

	Dep	endent Varia	ble:
	Mean M	Monthly Pren	nium (\$)
	(1)	(2)	(3)
Λb X 2001	-0.301	-0.178	-0.314
	(0.056)	(0.095)	(0.057)
Δb X 2002	-0.503	-0.352	-0.516
	(0.061)	(0.112)	(0.061)
Δb X 2003	-0.444	-0.378	-0.445
	(0.072)	(0.120)	(0.073)
Main Effects			
County FE	X	Х	Х
Year FE	X	X	Х
Additional Controls			
Pre-BIPA Payment X Year FE		X	
Urban X Year FE			Х
Pre-BIPA Mean of Dep. Var.	12.10	12.10	12.10
R-Squared	0.71	0.71	0.71

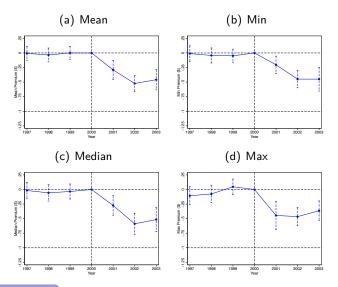

Premium Regressions, Plan Level Regressions

Table: Impact of \$1 Increase in Monthly Payments

		Deper	ndent Variable	: Monthly Pre	mium (\$)			
	Lir	near Regressi	ion	Tobit Regression				
	(1)	(2)	(3)	(4)	(5)	(6)		
Δb X 2001	-0.298	-0.195	-0.311	-0.461	-0.181	-0.485		
	(0.056)	(0.094)	(0.056)	(0.011)	(0.016)	(0.011)		
Δb X 2002	-0.502	-0.440	-0.514	-0.577	-0.370	-0.586		
	(0.060)	(0.112)	(0.060)	(800.0)	(0.011)	(0.008)		
Δb X 2003	-0.447	-0.424	-0.449	-0.537	-0.380	-0.539		
	(0.071)	(0.123)	(0.072)	(0.010)	(0.012)	(0.010)		
Main Effects								
County FE	X	Х	Х	Х	Х	Х		
Year FE	X	Х	Х	X	х	Х		
Additional Controls								
Pre-BIPA Payment X Year FE		Х			Х			
Urban X Year FE			Х			Х		
Pre-BIPA Mean of Dep. Var.	12.56	12.56	12.56	12.56	12.56	12.56		
R-Squared	0.60	0.60	0.60	N/A	N/A	N/A		

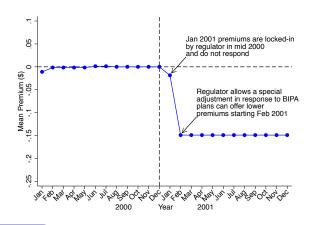

Unit of observation aggregated to MSA imes state imes year

Figure: Impact of \$1 Increase in Monthly Payments

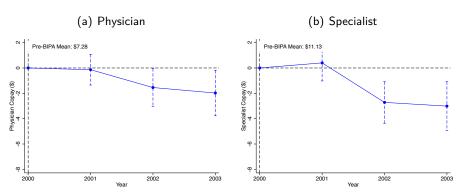

Detailed Timing of Effects

Figure: Impact of \$1 Increase in Monthly Payments

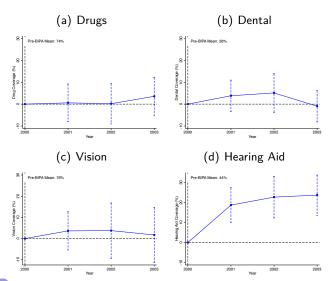

Benefits: Average Copays

Figure: Impact of \$50 Increase in Monthly Payments

Benefits: Drugs, Dental, Vision, Hearing Aid Coverage

Figure: Impact of \$50 Increase in Monthly Payments

Benefits Regressions

Table: Impact of Increase in Monthly Payments

			De	pendent Varia	ble:		
	Physician	Specialist	Drug	Dental	Vision	Hearing Aid	Actuaria
	Copay (\$)	Copay (\$)	Coverage (%)	Coverage (%)	Coverage (%)	Coverage (%)	Value (\$
	(1)	(2)	(3)	(4)	(5)	(6)	(7)
Δb X 2001*	-0.136	0.402	0.589	3.827	3.622	18.725	0.021
	(0.618)	(0.726)	(4.396)	(3.654)	(4.595)	(4.424)	(0.047)
Δb X 2002*	-1.544	-2.717	0.180	5.111	3.756	22.721	0.053
	(0.769)	(0.840)	(4.719)	(4.513)	(6.668)	(5.321)	(0.049)
∆b X 2003*	-1.976	-3.010	3.571	-0.939	1.721	23.712	0.079
	(0.917)	(0.986)	(4.410)	(3.664)	(6.643)	(5.132)	(0.044)
Main Effects							
County FE	X	Х	Х	X	Х	X	Х
Year FE	X	Х	Х	Х	Х	Х	Х
Pre-BIPA Mean of Dep. Var.	7.28	11.13	74.20	26.11	75.84	44.44	n/a
R-Squared	0.66	0.70	0.83	0.68	0.75	0.85	0.83

^{*}Final column displays the effect of a \$1 increase in monthly payments. All other columns display the impact of a \$50 increase in monthly payments.

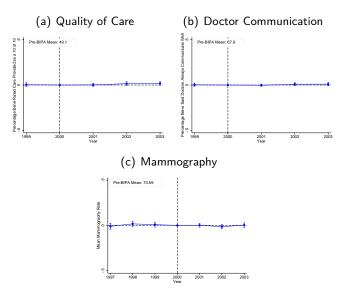
• Back to Monetized Benefits

Benefits Regressions, Additional Specifications

Table: Impact of \$50 Increase in Monthly Payments

						Depe	ndent Var	iable:						
	Physicia	n Copay	Speciali	st Copay			Dental (Coverage	Vision C	overage	Hearin	ng Aid		
	(5	ŝ)	(:	\$)	Drug Cov	erage (%)	(%)		(%)		Coverage (%)		Actuarial Value (\$)	
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)
Δb X 2001*	-0.24	-0.12	0.44	0.46	4.45	0.94	7.84	4.19	3.82	3.77	18.99	18.66	0.07	0.02
	(0.67)	(0.63)	(0.83)	(0.73)	(4.73)	(4.41)	(5.07)	(3.77)	(5.80)	(4.68)	(5.35)	(4.51)	(0.05)	(0.05)
Δb X 2002*	-1.69	-1.70	-2.88	-2.78	4.47	0.72	12.41	6.62	8.06	3.85	26.13	22.74	0.11	0.06
	(0.84)	(0.78)	(1.01)	(0.85)	(5.15)	(4.83)	(5.62)	(4.58)	(7.30)	(6.71)	(6.34)	(5.46)	(0.06)	(0.05)
Δb X 2003*	-2.78	-2.14	-3.10	-3.21	3.86	4.92	-0.62	0.73	6.10	1.77	21.86	23.79	0.09	0.10
	(1.01)	(0.93)	(1.27)	(1.01)	(4.77)	(4.48)	(5.11)	(3.66)	(7.34)	(6.69)	(6.55)	(5.26)	(0.05)	(0.04)
Main Effects														
County FE	X	Х	Х	Х	X	Х	Х	Х	Х	Х	X	Х	Х	Х
Year FE	X	Х	X	Х	Х	X	Х	X	X	X	X	X	X	Х
Additional Controls														
Pre-BIPA Base Payment X Year FE	Х		Х		Х		Х		X		Х		Х	
Urban X Year FE		х		Х		х		х		х		Х		Х
Pre-BIPA Mean of Dep. Var.	7.28	7.28	11.13	11.13	74.20	74.20	26.11	26.11	75.84	75.84	44.44	44.44	35.95	35.95
R-Squared	0.67	0.66	0.70	0.70	0.83	0.83	0.69	0.68	0.76	0.75	0.85	0.85	0.83	0.83

^{*}Final column displays the effect of a \$1 increase in monthly payments. All other columns display the impact of a \$50 increase in monthly payments.


• Back to Monetized Benefits

Plan Quality

- Measures of plan quality (Dafny and Dranove, 2008)
 - 1. Measures listed in *Medicare & You* booklet
 - Quality of care, quality of doctor communication from CAHPS, mammogram rate from HEDIS
 - 2. Unreported quality index
 - Beta blockers, diabetic eye exams, preventive routine exams from HEDIS

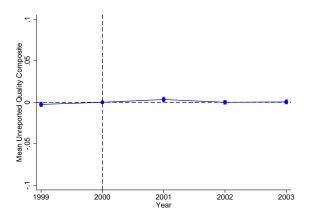

Plan Quality

Figure: Impact of \$50 Increase in Payment Floor

Unreported Quality Index

Figure: Impact of \$50 Increase in Monthly Payments

Standardized composite of beta blockers, preventive care visits, diabetic eye exams

▶ Back to Quality Discussion

Plan Availability, Alternative Specifications

Table: Impact of \$50 Increase in Monthly Payments

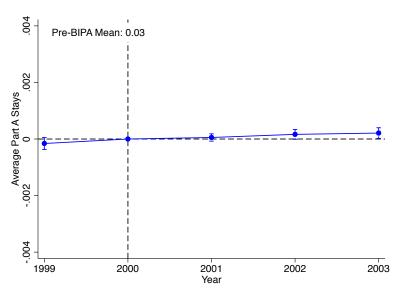
			Depender	nt Variable:		
	At L	east One Plai	n (%)		HHI*	
	(1)	(2)	(3)	(4)	(5)	(6)
∆b X 2001	-2.15	0.04	-2.34	0.037	-0.031	0.039
	(1.75)	(2.06)	(1.76)	(0.030)	(0.033)	(0.030)
Δb X 2002	1.39	2.92	1.92	-0.001	-0.056	-0.012
	(2.44)	(2.65)	(2.46)	(0.034)	(0.037)	(0.035)
Δb X 2003	5.58	7.89	6.11	-0.030	-0.097	-0.043
	(2.52)	(2.91)	(2.55)	(0.037)	(0.040)	(0.038)
Main Effects						
County FE	X	X	X	X	X	X
Year FE	X	X	X	Х	X	X
Additional Controls						
Pre-BIPA Base Payment X Year FE		X			Х	
Urban X Year FE			X			Х
Pre-BIPA Mean of Dep. Var.	66.2	66.2	66.2	0.51	0.51	0.51
R-Squared	0.91	0.91	0.91	0.77	0.78	0.77
· ·						

Estimation Approach Details

Proportional costs imply proportional costs for marginal individual

$$MC^{MA}(Q^{MA}) = \phi MC^{TM}(Q^{TM})$$

• Because $Q^{TM}=1-Q^{MA}$, slopes under MA and TM are of reversed sign and proportional


$$\frac{dMC^{MA}}{dQ^{MA}} = -\phi \frac{dMC^{TM}}{dQ^{TM}}$$

Applying linearity to translate from MC to AC yields

$$\frac{dAC^{MA}}{dQ^{MA}} = -\phi \frac{dAC^{TM}}{dQ^{TM}}$$

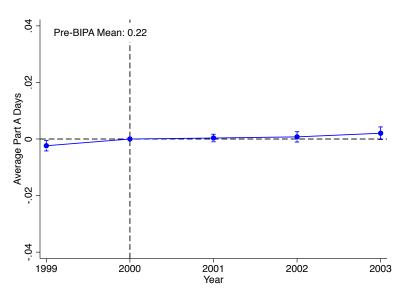

Part A Stays

Figure: Impact of \$50 Increase in Monthly Payments

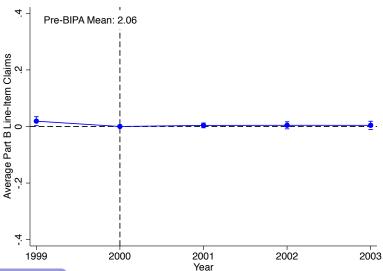

Part A Days

Figure: Impact of \$50 Increase in Monthly Payments

Part B Line-Item Claims

Figure: Impact of \$50 Increase in Monthly Payments

Selection Regression Estimates

Table: Impact of \$50 Increase in Monthly Payment

		Depende	nt Variable:		Implied Pass-Through
			MA Risk Adjustment	Mean Premiums*	with Selection (p)
	MA Enrollment (%)	TM Costs (\$)	(\$)	(\$)	with selection (p)
	(1)	(2)	(3)	(4)	(5)
		Panel A: Yearl	BIPA Effect		
Δb X 2001	0.84	-2.96	-1.25	-0.300	1.076
	(0.62)	(1.72)	(0.47)	(0.056)	(0.267)
Δb X 2002	3.38	-0.93	-2.41	-0.504	0.903
	(0.85)	(3.48)	(0.60)	(0.061)	(0.125)
Δb X 2003	4.72	3.76	-3.24	-0.450	0.732
	(0.92)	(3.79)	(0.82)	(0.071)	(0.103)
		Panel B: Pooled F	ost-BIPA Effect		
Δb X Post-BIPA	3.27 (0.73)	0.21 (2.86)	-2.68 (0.60)	-0.44 (0.05)	0.845 (0.095)
	(0.75)			(0.03)	(0.093)
		Controls: A	III Panels		I
Main Effects					
County FE	X	X	x	X	
Year FE	х	Х	х	x	
Pre-BIPA Mean of Dep. Var.	30.53	485.25	484.48	10.90	

^{*}Column 4 displays the impact of a \$1 increase in monthly payments; all other columns display the effect of a \$50 increase in monthly payments.
• Additional Specifications
• Back to Selection Section

Selection Regression Estimates, Additional Specifications

Table: Impact of \$50 Increase in Monthly Payments

				Depe	ndent Vari	able:			
	MA	Enrollmen	t (%)	1	TM Costs (\$	i)	MA Ri	sk Adjustm	ent (\$)
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
		P	anel A: Year	y BIPA Effect	:				
Δb X 2001	0.84	2.26	0.83	-2.96	3.04	-3.22	-1.25	-0.75	-1.35
	(0.62)	(0.68)	(0.63)	(1.72)	(1.94)	(1.78)	(0.47)	(0.91)	(0.50)
Δb X 2002	3.38	5.17	3.65	-0.93	5.34	-1.19	-2.41	-2.76	-2.50
	(0.85)	(0.96)	(0.86)	(3.48)	(3.96)	(3.59)	(0.60)	(1.09)	(0.61)
Δb X 2003	4.72	7.31	5.08	3.76	10.84	3.74	-3.24	-3.25	-3.36
	(0.92)	(1.04)	(0.93)	(3.79)	(5.25)	(3.91)	(0.82)	(1.28)	(0.84)
		Pane	I B: Pooled I	ost-BIPA Effe	ect				
Δb X Post-BIPA	3.27	5.95	3.47	0.21	8.18	0.15	-2.68	-2.47	-2.80
	(0.73)	(0.86)	(0.74)	(2.86)	(3.53)	(2.98)	(0.60)	(1.06)	(0.62)
		Pane	I C: Pooled I	ost-BIPA Effe	ect				
Main Effects									
County FE	X	Х	Х	Х	Х	Х	Х	Х	Х
Year FE	X	Х	Х	Х	Х	Х	Х	Х	Х
Additional Controls									
Pre-BIPA Base Payment X Year FE		Х			Х			Х	
Urban X Year FE			Х			Х			Х
Pre-BIPA Mean of Dep. Var.	30.53	30.53	30.53	484.48	484.48	484.48	485.25	485.25	485.25